Computational Neuroscience | Coursera

Brief information Instructors: Rajesh P. N. Rao, Adrienne Fairhall About this course: This course provides an introduction to basic computational methods for understanding what nervous systems do and for determining how they function. We will explore the computational principles governing various aspects of vision, sensory-motor control, learning, and memory. Specific topics that will be covered […]

Neural Networks and Learning Machines. 3rd Ed. Simon O. Haykins. Pearson. 2008

Chapter 8. Principal-Components Analysis 8.1 Introduction 8.2 Principles of Self-Organization Principle 1. Self-Amplification Principle 2. Competition Principle 3. Cooperation Principle 4. Structural Information 8.3 Self-Organized Feature Analysis 8.4 Principal-Components Analysis: Perturbation Theory 8.5 Hebbian-Based maximum Eigenfilter 8.6 Hebbian-Based Principal Components Analysis 8.7 Case Study: Image Coding 8.8 Kernel Principal-Components Analysis 8.9 Basic Issues Involved in […]

Computational Neuroscience | Course | MS CogSci

Range 8.1~8.7 9.1~9.10 10.1~10.14 10.19~10.21 Chapter 8. Principal-Components Analysis 8.1. Introduction Self-organized learning Self-organized learning is a type of unsupervised learning. locality of learning 8.2. Principles of Self-Organization Principle 1: self-amplification The following rule is based on Hebb’s postulate of learning. If two neurons of a synapse are activated simultaneously, then synaptic strength is selectively […]